Localization of injective modules over valuation rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Injective Modules over Valuation Rings

It is proved that EJ is injective if E is an injective module over a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat, then EZ is injective too. It follows that localizations of injective modules over h-local Prüfer domains are injective too. If S is a multiplicative subset of a noetherian ring R, it is well known that SE is injective for each injective R-module E. The...

متن کامل

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

Localization of injective modules over arithmetical rings

It is proved that localizations of injective R-modules of finite Goldie dimension are injective if R is an arithmetical ring satisfying the following condition: for every maximal ideal P , RP is either coherent or not semicoherent. If, in addition, each finitely generated R-module has finite Goldie dimension, then localizations of finitely injective R-modules are finitely injective too. Moreove...

متن کامل

Pure-injective hulls of modules over valuation rings

If R̂ is the pure-injective hull of a valuation ring R, it is proved that R̂ ⊗R M is the pure-injective hull of M , for every finitely generated Rmodule M . Moreover R̂ ⊗R M ∼= ⊕1≤k≤nR̂/AkR̂, where (Ak)1≤k≤n is the annihilator sequence of M . The pure-injective hulls of uniserial or polyserial modules are also investigated. Any two pure-composition series of a countably generated polyserial module a...

متن کامل

Weak dimension of FP-injective modules over chain rings

It is proven that the weak dimension of each FP-injective module over a chain ring which is either Archimedean or not semicoherent is less or equal to 2. This implies that the projective dimension of any countably generated FP-injective module over an Archimedean chain ring is less or equal to 3. By [7, Theorem 1], for any module G over a commutative arithmetical ring R the weak dimension of G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-05-08350-4